Uji Eksperimental Pengaruh Sudut Kemiringan Modul Surya 50 Watt Peak Dengan Posisi Megikuti Pergerakan Arah Matahari

Eflita Yohana, Darmanto .


Abstract : Utilization of solar energy in the generation of electrical energy has been done using the solar cell panel, but the solar cell panels are installed all this time still static (do not follow the movement of the sun). Then with this condition solar panel are unable to catch maximally the beam of sunlight throughout the day and as a result of this, the electrical energy generated was not maximal. To overcome the limitations of solar cell panels that static, then on the final task of this research will be designed solar cell panels that can follow the movement of the Sun using the calculation of latitude, the angle declination, the angle of the sundial and slope by changing position the lay module solar system (photovoltaic) follow the movement of the Sun according to the calculation of these parameters when testing so expect irradiation (W/m2), as input will produce output in the form of a current affair brief (Isc), open circuit voltage (Voc), and power output (Pout). Then compare how much the value of irradiation (W/m2), short circuit current (Isc), open circuit voltage (Voc), and power output (Pout) on the solar module (photovoltaic) when the position of following the direction of the movement of the Sun with a solar module (photovoltaic) when the horizontal position. The result of testing module solar (photovoltaic) can be seen that results power output reached 39.2 watt on averages, with irradiation 949.8 W/m2 and current obtained by 2.6 A (ampere) It was because photovoltaic followed the direction of movement when the sun will always positioned photovoltaic to remain face to sun so that it stays will be able to catch the emission of the sun maximally.

Keywords : The Angle of Declination, The angle of the sundial, The angle of an azimuth of the, sun Photovoltaic, The angle slope

Full Text:



  • There are currently no refbacks.

Mekanika: Majalah Ilmiah Mekanika

ISSN: 1412-7962 || eISSN: 2579-3144

Address :  Jl. Ir Sutami no 36 A, Building I, Faculty of Engineering, Universitas Sebelas Maret, Surakarta.

Phone    :  +62271632163 

email     : mesin@ft.uns.ac.id


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License